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Existence, uniqueness

Throughout this talk we fix α ∈ (0,1).

Theorem (Lichtenstein 1925, 1927, 1928; Gunther 1927, 1928;
Wolibner 1933)

Assume that u0 ∈ C1,α(Rd ), d ≥ 2. There exists a unique solution, u,
to the Euler equations with u ∈ L∞(0,T ; C1,α) for some T > 0. When
d = 2, T can be taken arbitrarily large.
In fact, such well-posedness can be obtained for striated regularity.

Theorem (B & K 2014, 2015—roughly stated)

Assume that curl u0 ∈ L1 ∩ L∞(Rd ), d ≥ 2. Let φ0 ∈ C1,α(Rd ) with ∇φ0
non-vanishing. If u0 has Cα regularity along the level surfaces of φ0
then u(t) has Cα regularity along the level surfaces of φ0 transported
by the flow. Moreover, the Lagrangian velocity remains Cα along the
level surfaces of φ0 itself.
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Plan of the talk

1 Transport, pushforward, and frames.

2 Vector fields used to define striated regularity.

3 A little history of the problem: striated regularity of vorticity.

4 A more precise (but still local) expression of our main result.

5 The Lagrangian formulation.

6 The singularities in ∇u.
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Transport

Let η be the flow map associated with u:

∂tη(t , x) = u (t , η(t , x)) , η(0, x) = x .

If φ is transported by the flow map then

φ(t , η(t , x)) = φ0(t , x)

and
d
dt
φ(t , η(t , x)) = 0.

A simple calculation gives

d
dt
∇φ(t , η(t , x)) = −(∇u)T∇φ(t , η(t , x)).

Or, if W := ∇φ, we have

d
dt

W (t , η(t , x)) = −((∇u)T W )(t , η(t , x)).
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Pushforward of a vector field

For a vector field, Y0, define the pushforward of Y0 by

Y (t , η(t , x)) := ∇η(t , x)Y0(x).

This is just the Jacobian of the diffeomorphism, η(t , ·), multiplied by Y0.

A calculation shows that

d
dt

Y (t , η(t , x)) = (∇uY )(t , η(t , x)).

(Note ∇uY = Y · ∇u.)

4 of 19



Orthogonality with W conserved

Hence,
d
dt

(Y ·W )(t , η(t , x)) =

(
W · dY

dt
+ Y · dW

dt

)
(t , η(t , x))

=
(

W · (∇uY )− Y · ((∇u)T W )
)

(t , η(t , x))

=
(

W i(∇u)ijY j − Y j((∇u)T )jiW i
)

(t , η(t , x))

=
(

W i∂juiY j − Y j∂juiW i
)

(t , η(t , x)) = 0.

So if Y (0) ⊥W (0) then Y (t) ⊥W (t) for all time.

5 of 19



Frames for R3

This means that if we start with a frame,
{

Y1,0,Y2,0,W0
}

, with
W0 = ∇φ0, we can maintain a frame at time t by either:

1 Transporting φ0 to φ, setting W = ∇φ, and building a frame
around it, or

2 Pushing forward Y0 :=
{

Y1,0,Y2,0
}

to Y(t) := {Y1(t),Y2(t)}, and
completing the frame with W (t).

In each case, we obtain (up to a multiplicative constant) the same final
vector field, W , which is orthogonal to the rest of the frame. The
orthogonality of the entire frame, however, is not conserved.
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Transport versus pushforward

We either view W (t) = ∇φ(t) as the direction of the singularity in the
velocity gradient or Y(t) as the directions of higher regularity.

Transporting φ0 has the advantage that it is easier to state
theorems, and transport is easier to think about geometrically. The
best way to think about the propagation of regularity of the
boundary of a surface, such as a vortex tube.

Pushing forward Y0 makes it easier to write explicit expressions,
demonstrate continuity over time, define function spaces with
respect to the frame, and do estimates. It is historically the way
striated regularity has been defined.
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Vector fields used to define striated regularity

For simplicity, we will present only the situation where the
regularity of the velocity is prescribed by a single (ordered) set,

Y = {Y1,Y2} ,

explicitly in 3D, where Y1, Y2 are time-varying vector fields and
Y(0) = Y0. Need not be orthogonal.
More generally, a potentially infinite collection of such sets would
be used.
For any function, f , on vector fields, define

f (Y) := {f (Y1), f (Y2)} .

For any Banach space, X ,

‖f (Y)‖X := max {‖f (Y1)‖X , ‖f (Y2)‖X} .

When ‖f (Y0)‖X <∞ we say that f (Y0) ∈ X .
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Sufficient Family of Vector Fields

Define

I(Y) :=

{
infx∈R2 |Y1(x)| in 2D,
infx∈R3 max {|Y1(x)| , |Y2(x)| , |Y1(x)× Y2(x)|} in 3D.

We say that Y0 is a sufficient family of vector fields if
Yj ∈ Cα(R2) with div Yj ∈ Cα(R2), j = 1, . . . ,d − 1,
I(Y0) > 0.

A sufficient family of vector fields Y0 can always be obtained from
φ0 ∈ C1,α(Rd ) and |∇φ0| bounded away from zero.
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Vorticity

We define the vorticity in any of three different ways:

d = 2 : ω = ω(u) := ∂1u2 − ∂2u1,

d = 3 : ~ω = ~ω(u) := curl u,
d ≥ 2 : Ω = Ω(u) := ∇u − (∇u)T ;

Ωj
k = ∂kuj − ∂juk .

In vorticity form, the Euler equations are

d = 2 : ∂tω + u · ∇ω = 0,
d = 3 : ∂t~ω + u · ∇~ω = ~ω · ∇u,
d ≥ 2 : ∂t Ω + u · ∇Ω + Ω ·̃ ∇u = 0,

(Ω ·̃ ∇u)j
k := Ωm

j ∂muk − Ωm
k ∂muj .
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2D: Striated initial vorticity

Theorem (Chemin 1995)

Let Y0 be a sufficient Cα family of vector fields in R2. Assume that
ω0 ∈ L1 ∩ L∞ and div(ωY) ∈ Cα−1. Then there exists a solution to the
Euler equations for which div(ωY) ∈ L∞loc(R; Cα−1). Also,

‖∇u(t)‖L∞ ≤ CeCt , ‖Y(t)‖Cα ≤ CeeCt
.

The solution is unique for all ω ∈ L∞loc(R; L1 ∩ L∞) [Yudovich 1963].

This is a refinement of the result in Chemin’s 1993 paper, which gave a
detailed proof of his 1991 announcement of the persistence of striated
regularity, including a proof of the persistence of regularity of a vortex
patch boundary in 2D. This persistence was also proved in Bertozzi
and Constantin 1993.

Serfati 1994 proved a version of persistence of striated regularity in
slightly less generality than Chemin 1991 or 1993.
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Negative-index Hölder spaces

For α ∈ (0,1), Cα−1 is essentially the space of all functions that are
sums of derivatives of functions in Cα. More precisely.

Cα−1(Rd ) := {f + div g : f ,g ∈ Cα} ,

‖h‖Cα−1 := inf
f ,g

max
{
‖f‖Cα , ‖g1‖Cα , ‖g2‖Cα

}
.

Formally,

div(ωY ) = Y · ∇ω + ω div Y .

Since ω ∈ L1 ∩ L∞ and div Y ∈ Cα, we interpret div(ωY ) ∈ Cα−1 as
meaning that ω is Cα in the direction of Y , or, when applied to a whole
family of vector fields, as having striated regularity of vorticity in Cα.
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3D: Striated initial vorticity

Theorem (Danchin 1999)

Let Y0 be a sufficient Cα family of vector fields in Rd , d ≥ 2. Assume
that Ω0 ∈ L1 ∩ L∞ and div(Ωj

kY) ∈ Cα−1 for all j , k. Then for some
T > 0 there exists a solution to the Euler equations for which
div(Ωj

kY) ∈ L∞(0,T ; Cα−1) for all j , k and Y · ∇u ∈ L∞(0,T ; Cα). Also,

‖∇u(t)‖L∞ ≤ CeCt , ‖Y(t)‖Cα ≤ CeeCt
.

The solution is unique with certain conditions on u.

Earlier, Gamblin and Saint Raymond 1995 obtained a striated
regularity result with less generality that encompassed 3D “vortex
patches.” Fanelli in 2012 extended Danchin’s result to
nonhomogeneous, incompressible fluids (homogeneous fluids being a
special case).
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Striated regularity of velocity

One can avoid negative Hölder spaces and prove striated regularity of
velocity instead:

Theorem (B & K 2014, 2015)

Let Y0 be a sufficient Cα family of vector fields in Rd , d ≥ 2. For d ≥ 3
we also assume that Y0 is Lipschitz. Assume that ω0 or Ω0 ∈ L1 ∩ L∞

and Y0 · ∇u0 ∈ Cα. Then for some T > 0 there exists a solution to the
Euler equations for which Y · ∇u ∈ L∞(0,T ; Cα). Also,

‖∇u(t)‖L∞ ≤ CeCt , ‖Y(t)‖Cα ≤ CeeCt
.

In 2D, T can be arbitrarily large.

Our approach, however, was to work out the details in Serfati’s 1994
paper and extend it to the striated vorticity assumptions Chemin made
in his 1995 result.
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Lagrangian Form

With η the flow map for u, as before, define the Lagrangian velocity,

v(t , x) := u(t , η(t , x)).

A calculation using the chain rule gives

Y0(x) · ∇v(t , x) = (Y · ∇u)(t , η(t , x)).

Then,

‖Y0 · ∇v(t)‖Ċα ≤ ‖(Y · ∇u)(t)‖Ċα ‖∇η(t)‖αL∞ .

But ∇η(t) ∈ L∞, so as a simple corollary we have:

Corollary (Lagrangian form)
Let Y0 be as in the previous theorem. Then Y0 · ∇v(t) remains in Cα

for all time in 2D and up to time T in 3D.
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Lagrangian versus Eulerian Striated Regularity

In Eulerian variables, we pushforward Y0 by the flow map giving Y(t),
and measure regularity against this vector field.

In Lagrangian variables, we pullback the velocity field u by the flow
map giving v , and measure regularity against the unchanging Y0.

One should be able to do the same thing for measures of regularity
other than Hölderian. For instance, tangential Sobolev regularity (as in
Coutand and Shkoller 2015) or anisotropic Gevrey regularity (as in
Constantin, Kukavica, and Vicol 2015).

Dealing with higher regularity (Lagrangian or Eulerian) requires
“background” regularity of vorticity, not just Ω0 ∈ L1 ∩ L∞.
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Directions of the singularities in ∇u

Theorem (Serfati 1994 (2D), B & K 2015 (3D))

Let Y0, u, and T be as above for d = 2,3. There exists a d × d
matrix-valued function A(t) ∈ L∞(0,T ; Cα(Rd )) such that for all
t ∈ [0,T ], {

∇u − ωA ∈ L∞(0,T ; Cα(R2)), d = 2,
∇u − AΩ ∈ L∞(0,T ; Cα(R3)), d = 3.

The 2D version is stated in Serfati 1994.

This theorem describes how the directions of the singularities in ∇u
are related to the directions of the singularities in the vorticity.
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The Matrix A

2D: Letting Y = Y1,

A :=
1

|Y |2

(
Y 1Y 2 −(Y 1)2

(Y 2)2 −Y 1Y 2

)
= − 1

|Y |2
Y ⊗ Y⊥.

If instead A =
1

|Y |2
Y ⊗ Y then ∇u − AΩ ∈ L∞(0,T ; Cα(R3)).

3D: First orthonormalizing Y1,Y2, we have

A = Y1 ⊗ Y1 + Y2 ⊗ Y2.
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